Chapter 13

Meiosis and Sexual Life Cycles

Edited by Shawn Lester

PowerPoint® Lecture Presentations for

Biology

Eighth Edition

Neil Campbell and Jane Reece

Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp
Overview: Variations on a Theme

• Living organisms are distinguished by their ability to reproduce their own kind

• Genetics is the scientific study of heredity and variation

• Heredity is the transmission of traits from one generation to the next

• Variation is demonstrated by the differences in appearance that offspring show from parents and siblings
Inheritance of Genes

• **Genes** are the units of heredity, and are made up of segments of DNA

• Genes are passed to the next generation through reproductive cells called **gametes** (sperm and eggs)

• Each gene has a specific location called a **locus** on a certain chromosome

• Most DNA is packaged into chromosomes

• One set of chromosomes is inherited from each parent
Comparison of Asexual and Sexual Reproduction

- In **asexual reproduction**, one parent produces genetically identical offspring by mitosis.
- A **clone** is a group of genetically identical individuals from the same parent.
- In **sexual reproduction**, two parents give rise to offspring that have unique combinations of genes inherited from the two parents.
Sets of Chromosomes in Human Cells

- Human **somatic cells** (any cell other than a gamete) have 23 pairs of chromosomes

- A **karyotype** is an ordered display of the pairs of chromosomes from a cell

- The two chromosomes in each pair are called **homologous chromosomes**, or homologs

- Chromosomes in a homologous pair are the same length and carry genes controlling the same inherited characters
Fig. 13-3

APPLICATION

TECHNIQUE

Pair of homologous replicated chromosomes

Centromere

Sister chromatids

Metaphase chromosome

5 µm
TECHNIQUE

Pair of homologous replicated chromosomes

Centromere

Sister chromatids

Metaphase chromosome

5 µm
• The **sex chromosomes** are called X and Y

• Human females have a homologous pair of X chromosomes (XX)

• Human males have one X and one Y chromosome

• The 22 pairs of chromosomes that do not determine sex are called **autosomes**
• Each pair of homologous chromosomes includes one chromosome from each parent.

• The 46 chromosomes in a human somatic cell are two sets of 23: one from the mother and one from the father.

• A **diploid cell** \((2n)\) has two sets of chromosomes.

• For the majority of humans, the diploid number is 46 \((2n = 46)\).
Not Everything Has 23 Pairs of Chromosomes

• 23 pairs, 46 chromosomes is just for humans and several other animals like certain antelopes, monkeys, a shrimp, a rat species and others

• 23/46 is not a magic number

• Chromosome number does not correlate to complexity

• One ant species has 1 or 2 chromosomes, certain plants and protozoa have hundreds!

• Some protozoa have “nano-chromosomes” which range into the thousands!
In a cell in which DNA synthesis has occurred, each chromosome is replicated.

Each replicated chromosome consists of two identical sister chromatids.
Key
- Maternal set of chromosomes \((n = 3) \)
- Paternal set of chromosomes \((n = 3) \)

\[2n = 6 \]

Two sister chromatids of one replicated chromosome

Two nonsister chromatids in a homologous pair

Pair of homologous chromosomes (one from each set)
• A gamete (sperm or egg) contains a single set of chromosomes, and is **haploid** (n)

• For humans, the haploid number is 23 ($n = 23$)

• Each set of 23 consists of 22 autosomes and a single sex chromosome

• In an unfertilized egg (ovum), the sex chromosome is X

• In a sperm cell, the sex chromosome may be either X or Y
Behavior of Chromosome Sets in the Human Life Cycle

- **Fertilization** is the union of gametes (the sperm and the egg)
- The fertilized egg is called a **zygote** and has one set of chromosomes from each parent
- The zygote produces somatic cells by mitosis and develops into an adult
At sexual maturity, the ovaries and testes produce haploid gametes.

Gametes are the only types of human cells produced by **meiosis**, rather than mitosis.

Meiosis results in one set of chromosomes in each gamete.

Fertilization and meiosis alternate in sexual life cycles to maintain chromosome number.
Fig. 13-5

Key
- Haploid (n)
- Diploid (2n)

Haploid gametes (n = 23)
- Egg (n)
- Sperm (n)

Haploid gametes:
- Ovary
- Testis

Diploid zygote (2n = 46)
- Mitosis and development

Multicellular diploid adults (2n = 46)
• In most fungi and some protists, the only diploid stage is the single-celled zygote; there is no multicellular diploid stage

• The zygote produces haploid cells by meiosis

• Each haploid cell grows by mitosis into a haploid multicellular organism

• The haploid adult produces gametes by mitosis
Key

- Haploid (n)
- Diploid (2n)

Haploid unicellular or multicellular organism

Mitosis

Gametes

MEIOSIS

FERTILIZATION

Zygote

(c) Most fungi and some protists

Copyright © 2006 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.
• Depending on the type of life cycle, either haploid or diploid cells can divide by mitosis

• However, only diploid cells can undergo meiosis
Concept 13.3: Meiosis reduces the number of chromosome sets from diploid to haploid

- Like mitosis, meiosis is preceded by the replication of chromosomes.
- Meiosis takes place in two sets of cell divisions, called **meiosis I** and **meiosis II**.
- The two cell divisions result in four daughter cells, rather than the two daughter cells in mitosis.
- Each daughter cell has only half as many chromosomes as the parent cell.
The Stages of Meiosis

• In the first cell division (meiosis I), homologous chromosomes separate

• Meiosis I results in two haploid daughter cells with replicated chromosomes; it is called the reductional division

• In the second cell division (meiosis II), sister chromatids separate

• Meiosis II results in four haploid daughter cells with unreplicated chromosomes; it is called the equational division
Interphase

Homologous pair of chromosomes in diploid parent cell

Chromosomes replicate

Homologous pair of replicated chromosomes

Sister chromatids

Diploid cell with replicated chromosomes
Interphase

Homologous pair of chromosomes in diploid parent cell

Chromosomes replicate

Homologous pair of replicated chromosomes

Sister chromatids

Diploid cell with replicated chromosomes

Meiosis I

Homologous chromosomes separate

Haploid cells with replicated chromosomes
Interphase

Homologous pair of chromosomes in diploid parent cell

Chromosomes replicate

Homologous pair of replicated chromosomes

Sister chromatids

Diploid cell with replicated chromosomes

Meiosis I

1 Homologous chromosomes separate

Haploid cells with replicated chromosomes

Meiosis II

2 Sister chromatids separate

Haploid cells with unreplicated chromosomes
• Meiosis I is preceded by interphase, in which chromosomes are replicated to form sister chromatids

• The sister chromatids are genetically identical and joined at the centromere

• The single centrosome replicates, forming two centrosomes
Fig. 13-8

- **Prophase I**
 - Centrosome (with centriole pair)
 - Sister chromatids
 - Chiasmata
 - Spindle
 - Homologous chromosomes
 - Fragments of nuclear envelope

- **Metaphase I**
 - Centromere (with kinetochore)
 - Metaphase plate
 - Sister chromatids remain attached

- **Anaphase I**
 - Homologous chromosomes separate
 - Microtubule attached to kinetochore

- **Telophase I and Cytokinesis**
 - Cleavage furrow
 - Sister chromatids separate

- **Prophase II**
 - Sister chromatids remain attached

- **Metaphase II**
 - Homologous chromosomes separate

- **Anaphase II**
 - Sister chromatids separate

- **Telophase II and Cytokinesis**
 - Haploid daughter cells forming
Division in meiosis I occurs in four phases:

- Prophase I
- Metaphase I
- Anaphase I
- Telophase I and cytokinesis
Metaphase I

Centromere (with kinetochore)

Homologous chromosomes separate

Cleavage furrow

Telophase I and Cytokinesis

Sister chromatids remain attached

Fragments of nuclear envelope

Microtubule attached to kinetochore

Sister chromatids

Chiasma

Spindle

Prophase I

Centrosome (with centriole pair)

Sister chromatids

Homologous chromosomes

Fragments of nuclear envelope

Centromere (with kinetochore)

Metaphase plate

Anaphase I

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.
Prophase I

- Prophase I typically occupies more than 90% of the time required for meiosis
- Chromosomes begin to condense
- In **synapsis**, homologous chromosomes loosely pair up, aligned gene by gene
In crossing over, nonsister chromatids exchange DNA segments.

Each pair of chromosomes forms a tetrad, a group of four chromatids.

Each tetrad usually has one or more chiasmata, X-shaped regions where crossing over occurred.
Metaphase I

• In metaphase I, tetrads line up at the metaphase plate, with one chromosome facing each pole

• Microtubules from one pole are attached to the kinetochore of one chromosome of each tetrad

• Microtubules from the other pole are attached to the kinetochore of the other chromosome
Fig. 13-8b

Prophase I

- Centrosome (with centriole pair)
- Sister chromatids
- Chiasmata
- Homologous chromosomes
- Fragments of nuclear envelope

Metaphase I

- Centromere (with kinetochore)
- Spindle
- Metaphase plate
- Microtubule attached to kinetochore
Anaphase I

- In anaphase I, pairs of homologous chromosomes separate
- One chromosome moves toward each pole, guided by the spindle apparatus
- Sister chromatids remain attached at the centromere and move as one unit toward the pole
Telophase I and Cytokinesis

• In the beginning of telophase I, each half of the cell has a haploid set of chromosomes; each chromosome still consists of two sister chromatids

• Cytokinesis usually occurs simultaneously, forming two haploid daughter cells
• In animal cells, a cleavage furrow forms; in plant cells, a cell plate forms

• No chromosome replication occurs between the end of meiosis I and the beginning of meiosis II because the chromosomes are already replicated
Anaphase I

Sister chromatids remain attached

Homologous chromosomes separate

Telophase I and Cytokinesis

Cleavage furrow
Division in meiosis II also occurs in four phases:

- Prophase II
- Metaphase II
- Anaphase II
- Telophase II and cytokinesis

Meiosis II is very similar to mitosis
Fig. 13-8d

Prophase II

Metaphase II

Anaphase II

Telophase II and Cytokinesis

Sister chromatids separate

Haploid daughter cells forming
Prophase II

- In prophase II, a spindle apparatus forms
- In late prophase II, chromosomes (each still composed of two chromatids) move toward the metaphase plate
Metaphase II

- In metaphase II, the sister chromatids are arranged at the metaphase plate.
- Because of crossing over in meiosis I, the two sister chromatids of each chromosome are no longer genetically identical.
- The kinetochores of sister chromatids attach to microtubules extending from opposite poles.
Anaphase II

- In anaphase II, the sister chromatids separate.
- The sister chromatids of each chromosome now move as two newly individual chromosomes toward opposite poles.
Telophase II and Cytokinesis

- In telophase II, the chromosomes arrive at opposite poles
- Nuclei form, and the chromosomes begin decondensing
• Cytokinesis separates the cytoplasm

• At the end of meiosis, there are four daughter cells, each with a haploid set of unreplicated chromosomes

• Each daughter cell is genetically distinct from the others and from the parent cell
Anaphase II

Telephase II and Cytokinesis

Sister chromatids separate

Haploid daughter cells forming
A Comparison of Mitosis and Meiosis

• Mitosis conserves the number of chromosome sets, producing cells that are genetically identical to the parent cell

• Meiosis reduces the number of chromosomes sets from two (diploid) to one (haploid), producing cells that differ genetically from each other and from the parent cell

• The mechanism for separating sister chromatids is virtually identical in meiosis II and mitosis
Fig. 13-9a

MITOSIS

- **Prophase**: Chromosome replication
 - Replicated chromosome

- **Metaphase**: 2n = 6

- **Anaphase and Telophase**: Daughter cells of mitosis

MEIOSIS

- **Prophase I**: Chiasma, Homologous chromosome pair

- **Metaphase I**: 2n = 6

- **Anaphase I and Telophase I**: Daughter cells of meiosis I, Haploid n = 3

- **MEIOSIS II**: Daughter cells of meiosis II

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.
<table>
<thead>
<tr>
<th>Property</th>
<th>Mitosis</th>
<th>Meiosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA replication</td>
<td>Occurs during interphase before mitosis begins</td>
<td>Occurs during interphase before meiosis I begins</td>
</tr>
<tr>
<td>Number of divisions</td>
<td>One, including prophase, metaphase, anaphase, and telophase</td>
<td>Two, each including prophase, metaphase, anaphase, and telophase</td>
</tr>
<tr>
<td>Synopsis of homologous chromosomes</td>
<td>Does not occur</td>
<td>Occurs during prophase I along with crossing over between nonsister chromatids; resulting chiasmata hold pairs together due to sister chromatid cohesion</td>
</tr>
<tr>
<td>Number of daughter cells and genetic composition</td>
<td>Two, each diploid (2n) and genetically identical to the parent cell</td>
<td>Four, each haploid (n), containing half as many chromosomes as the parent cell; genetically different from the parent cell and from each other</td>
</tr>
<tr>
<td>Role in the animal body</td>
<td>Enables multicellular adult to arise from zygote; produces cells for growth, repair, and, in some species, asexual reproduction</td>
<td>Produces gametes; reduces number of chromosomes by half and introduces genetic variability among the gametes</td>
</tr>
</tbody>
</table>
Three events are unique to meiosis, and all three occur in meiosis I:

- Synapsis and crossing over in prophase I: Homologous chromosomes physically connect and exchange genetic information

- At the metaphase plate, there are paired homologous chromosomes (tetrads), instead of individual replicated chromosomes

- At anaphase I, it is homologous chromosomes, instead of sister chromatids, that separate
Concept 13.4: Genetic variation produced in sexual life cycles contributes to evolution

- Mutations (changes in an organism’s DNA) are the original source of genetic diversity
- Mutations create different versions of genes called alleles
- Reshuffling of alleles during sexual reproduction produces genetic variation
Origins of Genetic Variation Among Offspring

• The behavior of chromosomes during meiosis and fertilization is responsible for most of the variation that arises in each generation.

• Three mechanisms contribute to genetic variation:
 – Independent assortment of chromosomes
 – Crossing over
 – Random fertilization
Independent Assortment of Chromosomes

• Homologous pairs of chromosomes orient randomly at metaphase I of meiosis

• In independent assortment, each pair of chromosomes sorts maternal and paternal homologues into daughter cells independently of the other pairs
The number of combinations possible when chromosomes assort independently into gametes is 2^n, where n is the haploid number.

For humans ($n = 23$), there are more than 8 million (2^{23}) possible combinations of chromosomes.
Two equally probable arrangements of chromosomes at metaphase I
Possibility 1

Two equally probable arrangements of chromosomes at metaphase I

Possibility 2

Metaphase II
Possibility 1

Two equally probable arrangements of chromosomes at metaphase I

Combination 1 Combination 2

Possibility 2

Metaphase II

Daughter cells

Combination 3 Combination 4
Crossing Over

- Crossing over produces recombinant chromosomes, which combine genes inherited from each parent.
- Crossing over begins very early in prophase I, as homologous chromosomes pair up gene by gene.
• In crossing over, homologous portions of two nonsister chromatids trade places

• Crossing over contributes to genetic variation by combining DNA from two parents into a single chromosome
Prophase I of meiosis

Pair of homologs

Nonsister chromatids held together during synapsis
Prophase I of meiosis

Pair of homologs

Nonsister chromatids held together during synapsis

Chiasma

Centromere

TEM
Fig. 13-12-3

Prophase I of meiosis

Pair of homologs

Nonsister chromatids held together during synapsis

Chiasma

Centromere

TEM

Anaphase I
Fig. 13-12-4

Prophase I of meiosis

Pair of homologs

Nonsister chromatids held together during synapsis

Chiasma

Centromere

TEM

Anaphase I

Anaphase II
Prophase I of meiosis

Pair of homologs

Nonsister chromatids held together during synapsis

Chiasma

Centromere

Anaphase I

Anaphase II

Daughter cells

Recombinant chromosomes
Random Fertilization

- Random fertilization adds to genetic variation because any sperm can fuse with any ovum (unfertilized egg)
- The fusion of two gametes (each with 8.4 million possible chromosome combinations from independent assortment) produces a zygote with any of about 70 trillion diploid combinations
• Crossing over adds even more variation
• Each zygote has a unique genetic identity
The Evolutionary Significance of Genetic Variation Within Populations

- Natural selection results in the accumulation of genetic variations favored by the environment.
- Sexual reproduction contributes to the genetic variation in a population, which originates from mutations.
You should now be able to:

1. Distinguish between the following terms: somatic cell and gamete; autosome and sex chromosomes; haploid and diploid

2. Describe the events that characterize each phase of meiosis

3. Describe three events that occur during meiosis I but not mitosis

4. Name and explain the three events that contribute to genetic variation in sexually reproducing organisms